5 research outputs found

    Coupling Reduces Noise

    Full text link
    We demonstrate how coupling nonlinear dynamical systems can reduce the effects of noise. For simplicity we investigate noisy coupled map lattices. Noise from different lattice nodes can diffuse across the lattice and lower the noise level of individual nodes. We develop a theoretical model that explains this observed noise evolution and show how the coupled dynamics can naturally function as an averaging filter. Our numerical simulations are in excellent agreement with the model predictions

    Coupling Reduces Noise: Applying Dynamical Coupling to Reduce Local White Additive Noise

    No full text
    We demonstrate how coupling nonlinear dynamical systems can reduce the effects of noise. For simplicity we investigate noisy coupled map lattices and assume noise is white and additive. Noise from different lattice nodes can diffuse across the lattice and lower the noise level of individual nodes. We develop a theoretical model that explains this observed noise evolution and show how the coupled dynamics can naturally function as an averaging filter. Our numerical simulations are in excellent agreement with the model predictions

    Noise tolerant spatiotemporal chaos computing

    No full text
    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other\u27s effects, resulting in a system with less noise content and a more robust chaos computing architecture

    Role of network topology in noise reduction using coupled dynamics

    No full text
    We study the usefulness of coupled redundancy as a mechanism for reduction in local noise in coupled map lattices and investigate the role of network topology, coupling strength, and iteration number in this mechanism. Explicit numerical simulations to measure noise reduction in coupled units connected in different topologies such as ring, star, small-world, random, and grid networks have been carried out. We study both symmetric and asymmetric networks. Linear stability analysis is presented to identify an optimal symmetric topology. The effect of rewiring is also investigated, and we find that dynamic links enhance the noise reduction capabilities
    corecore